Worksheet \# 13

Stoichiometry

1. A laboratory method of preparing O_{2} gas involves the decomposition of solid KClO_{3} according to the following unbalanced equation: $\mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow \mathrm{KCl}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$
a) How many moles of $\mathrm{O}_{2}(\mathrm{~g})$ can be produced by the decomposition of $32.8 \mathrm{~g} \mathrm{KClO}_{3}$?
b) How many grams of KClO_{3} must be decomposed to produce $50.0 \mathrm{~g} \mathrm{O}_{2}$?
c) How many grams of KCl are formed when 23.8 grams O_{2} are formed in the decomposition of KClO_{3} ?
2. Suppose 9.5 g of gaseous $\mathrm{C}_{2} \mathrm{H}_{2}$ reacts with excess O_{2} according to the reaction below. What is the mass of CO_{2} produced?

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

3. Chlorine gas is made in the laboratory by the reaction of gaseous hydrochloric acid with solid manganese(IV) oxide to produce aqueous manganese(II) chloride, water, and chlorine. If 13.7 g of manganese(IV) oxide reacts with excess hydrochloric acid, how much chlorine is formed?
4. Solid bismuth oxide can react with carbon to form bismuth metal and carbon monoxide. How many grams of bismuth oxide reacted if 60.7 grams of bismuth is formed?
5. Solid chromium(III) oxide can react with gaseous hydrogen sulfide to form solid chromium(III) sulfide and water. How many grams of chromium(III) oxide are required to form 83.4 g of chromium(III) sulfide?
6. Solid potassium nitrate decomposes on heating to form solid potassium oxide, nitrogen, and oxygen. How many grams of potassium nitrate must be heated to form 86.6 kg of oxygen?
7. Solid silver oxide decomposes at temperatures in excess of $300^{\circ} \mathrm{C}$, yielding metallic silver and oxygen gas. A 3.13 g sample of impure silver oxide yields 0.187 g oxygen. If silver oxide is the only source of O_{2}, what is the percent silver oxide by mass in the sample?
8. The mineral galena (lead(II) sulfide) can be roasted it in the presence of oxygen to form solid lead(II) oxide and sulfur dioxide. A 5.77 g sample of impure galena yields 2.11 g lead(II) oxide. If the galena is the only source of lead(II) oxide, what is the percent galena in the impure sample?
9. How many moles of CO_{2} are produced by the reaction of 6.0 mol of MgCO_{3} ?

$$
\mathrm{MgCO}_{3}=\mathrm{MgO}+\mathrm{CO}_{2}
$$

10. Suppose that $1.6 \mathrm{~mol}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ are produced. How many moles of $\mathrm{H}_{2} \mathrm{O}$ are also produced?

$$
2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}
$$

11. According to reaction equation below, how many moles of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ react completely with 1.5 mol of KMnO_{4} ?

$$
2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+6 \mathrm{HCl}=2 \mathrm{MnCl}_{2}+10 \mathrm{CO}_{2}+2 \mathrm{KCl}+8 \mathrm{H}_{2} \mathrm{O}
$$

